Biotechnological applications of bacteriophages: State of the art

Bacteriophage particles are the most abundant biological entities on our planet, infecting specific bacterial hosts in every known environment and being major drivers of bacterial adaptive evolution. The study of bacteriophage particles potentially sheds light on the development of new biotechnology products. Bacteriophage therapy, although not new, makes use of strictly lytic phage particles as an alternative in the antimicrobial treatment of resistant bacterial infections and is being rediscovered as a safe method due to the fact that these biological entities devoid of any metabolic machinery do not have affinity to eukaryotic cells. Furthermore, bacteriophage-based vaccination is emerging as one of the most promising preventive strategies. This review paper discusses the biological nature of bacteriophage particles, their mode(s) of action and potential exploitation in modern biotechnology. Topics covered in detail include the potential of bacteriophage particles in human infections (bacteriophage therapy), nanocages for gene delivery, food biopreservation and safety, biocontrol of plant pathogens, phage display, bacterial biosensing devices, vaccines and vaccine carriers, biofilm and bacterial growth control, surface disinfection, corrosion control, together with structural and functional stabilization issues.

Keywords: Bacterial biosensing; Bacteriophages; Biofilm control; Corrosion control; Food biopreservation and safety; Gene delivery; Phage display; Phage therapy; Structural and functional stabilization; Surface disinfection; Vaccine carriers.

Copyright © 2018 Elsevier GmbH. All rights reserved.

Similar articles

Sharma S, Chatterjee S, Datta S, Prasad R, Dubey D, Prasad RK, Vairale MG. Sharma S, et al. Folia Microbiol (Praha). 2017 Jan;62(1):17-55. doi: 10.1007/s12223-016-0471-x. Epub 2016 Oct 8. Folia Microbiol (Praha). 2017. PMID: 27718043 Review.

Domingo-Calap P, Georgel P, Bahram S. Domingo-Calap P, et al. HLA. 2016 Mar;87(3):133-40. doi: 10.1111/tan.12742. Epub 2016 Feb 19. HLA. 2016. PMID: 26891965 Review.

Petty NK, Evans TJ, Fineran PC, Salmond GP. Petty NK, et al. Trends Biotechnol. 2007 Jan;25(1):7-15. doi: 10.1016/j.tibtech.2006.11.003. Epub 2006 Nov 20. Trends Biotechnol. 2007. PMID: 17113664 Review.

Rios AC, Moutinho CG, Pinto FC, Del Fiol FS, Jozala A, Chaud MV, Vila MM, Teixeira JA, Balcão VM. Rios AC, et al. Microbiol Res. 2016 Oct;191:51-80. doi: 10.1016/j.micres.2016.04.008. Epub 2016 May 7. Microbiol Res. 2016. PMID: 27524653 Review.

Fathima B, Archer AC. Fathima B, et al. Res Microbiol. 2021 Sep-Oct;172(6):103863. doi: 10.1016/j.resmic.2021.103863. Epub 2021 Jul 19. Res Microbiol. 2021. PMID: 34293451 Review.

Cited by

Imklin N, Sriprasong P, Thanantong N, Lekcharoensuk P, Nasanit R. Imklin N, et al. Phage (New Rochelle). 2024 Jun 21;5(2):107-116. doi: 10.1089/phage.2023.0020. eCollection 2024 Jun. Phage (New Rochelle). 2024. PMID: 39119207

Choi YJ, Kim S, Shin M, Kim J. Choi YJ, et al. Antibiotics (Basel). 2024 Jun 29;13(7):610. doi: 10.3390/antibiotics13070610. Antibiotics (Basel). 2024. PMID: 39061292 Free PMC article.

Ulrich L, Steiner LX, Giez C, Lachnit T. Ulrich L, et al. mSphere. 2024 Jul 30;9(7):e0070723. doi: 10.1128/msphere.00707-23. Epub 2024 Jun 27. mSphere. 2024. PMID: 38934592 Free PMC article.

Yi C, Chen J, She X. Yi C, et al. Heliyon. 2024 Apr 29;10(9):e30496. doi: 10.1016/j.heliyon.2024.e30496. eCollection 2024 May 15. Heliyon. 2024. PMID: 38711648 Free PMC article. Review.

Wu LY, Wijesekara Y, Piedade GJ, Pappas N, Brussaard CPD, Dutilh BE. Wu LY, et al. Genome Biol. 2024 Apr 15;25(1):97. doi: 10.1186/s13059-024-03236-4. Genome Biol. 2024. PMID: 38622738 Free PMC article.